Category Archives: chemistry hacks

Synthetic Biology Creates Living Computers

Most people have at least a fuzzy idea of what DNA is. Ask about RNA, though, and unless you are talking to a biologist, you are likely to get even more handwaving. We hackers might have to reread our biology text books, though, since researchers have built logic gates using RNA.

Sometimes we read these university press releases and realize that the result isn’t very practical. But in this case, the Arizona State University study shows how AND, OR, and NOT gates are possible and shows practical applications with four-input AND gates and six-input OR gates using living cells. The …read more

Continue reading

Posted in biology, chemistry hacks, dna, oligonucleotide, rna | Leave a comment

Stealing Joules From An Aluminium-Air Battery

While batteries are cheap and readily obtainable today, sometimes it’s still fun to mess around with their less-common manifestations. Experimenting with a few configurations, Hackaday.io user [will.stevens] has assembled an aluminium-air battery and combined it with a joule thief to light an LED.

To build the air battery, soak an activated charcoal puck — from a water filter, for example — in salt-saturated water while you cut the base off an aluminium can. A circle of tissue paper — also saturated with the salt water — is pressed between the bare charcoal disk and the can, taking care not to …read more

Continue reading

Posted in air, aluminium, battery, cell, chemistry hacks, Joule, misc hacks, thief | Leave a comment

Anyone Need a Little Fuming Nitric Acid?

If there’s a chemical with a cooler name than “fuming nitric acid,” we can’t think of it. Nearly pure nitric acid is useful stuff, especially if you’re in the business of making rocket fuels and explosives. But the low-end nitric acid commonly available tops out at about 68% pure, so if you want the good stuff, you’ll have to synthesize fuming nitric acid yourself. (And by “good stuff”, we mean be very careful with the resulting product.)

Fuming nitric acid comes in two colors – red fuming nitric acid (RFNA), which is about 90% pure and has some dissolved nitrogen …read more

Continue reading

Posted in chemistry hacks, condensation, distillation, Haber process, nitric acid, potassium nitrate, RFNA, sulfuric acid, synthesis | Leave a comment

Sort Out Chemical Storage For Your Shop

There is one constant in the world of hardware hacker’s workshops, be they a private workshop in your garage or a public hackspace, and it goes something like this:

Everybody’s a safety expert in whatever it is they are working with, right up until the accident.

In other words, it is very tempting to harbour a cavalier attitude to something that either you are familiar with or the hazards of which you do not understand, and this breeds an environment in which mishaps become a distinct possibility.

As hardware people, we are familiar with basic tool safety or electrical safety. …read more

Continue reading

Posted in chemicals, Chemistry, chemistry hacks, Featured, hackspaces, how-to, Interest, Original Art, safety, workshops | Leave a comment

Graphene from Graphite by Electrochemical Exfoliation

Graphene is an interesting material, but making enough of the stuff to do something useful can be a little tough. That’s why we’re always on the lookout for new methods, like this electrochemical process for producing graphene in bulk.

You probably know that graphene is a molecular monolayer of carbon atoms linked in hexagonal arrays. Getting to that monolayer is a difficult proposition, but useful bits of graphene can be created by various mechanical and chemical treatments of common graphite. [The Thought Emporium]’s approach to harvesting graphene from graphite is a two-step process starting with electrochemical exfoliation. Strips of thin …read more

Continue reading

Posted in chemistry hacks, delamination, electrochemistry, exfoliation, ferrous sulfate, graphene, graphite, ultrasonic | Leave a comment

Fluorescence Microscopy Meets DIY Fluid Management

Fluorescence microscopy is an optical technique that incorporates fluorescence or phosphorescence (as opposed to reflection and absorption) in order to study the properties of organic and inorganic substances. Not a stranger to bringing DIY techniques into the lab, [Philip] is using 3D printing resources to advance science and delight interns from labs everywhere.

In fluorescence microscopy, a huge limiting factor that decreases the amount of data that can be gleaned from a single sample is the number of targets that can be labeled with fluorescent tags. However, overlap in the spectral emissions of fluorophores limits the fluorophores that can be …read more

Continue reading

Posted in chemistry hacks, Fluid Management, Fluorescence Microscopy, Fluorophore | Leave a comment

High Vacuum with Mercury and Glassware

If you want to build your own vacuum tubes, whether amplifying, Nixie or cathode-ray, you’re going to need a vacuum. It’s in the name, after all. For a few thousand bucks, you can probably pick up a used turbo-molecular pump. But how did they make high vacuums back in the day? How did Edison evacuate his light bulbs?

Strangely enough, you could do worse than turn to YouTube for the answer: [Cody] demonstrates building a Sprengel vacuum pump (video embedded below). As tipster [BrightBlueJim] wrote us, this project has everything: high vacuum, home-made torch glassware, and large quantities of toxic …read more

Continue reading

Posted in cathode ray tube, chemistry hacks, classic hacks, edison, nixie, pump, tube, vacuum | Leave a comment

Heat Shrink Tubing and the Chemistry Behind Its Magic

There’s a lot to be said in favor of getting kids involved in hacking as young as possible, but there is one thing about working in electronics that I believe is best left as a mystery until at least the teenage years — hide the shrink tube. Teach them to breadboard, have them learn resistor color codes and Ohm’s Law, and even teach them to solder. But don’t you dare let them near the heat shrink tubing. Foolishly reveal that magical stuff to kids, and if there’s a heat source anywhere nearby I guarantee they’ll blow through your entire stock …read more

Continue reading

Posted in chemistry hacks, Featured, heat shrink, Interest, Original Art, Paul Cook, radiation, radiochemistry, shrink tubing | Leave a comment

Souped-Up, Next Gen Wearables

The biggest hurdle to great advances in wearable technology is the human body itself. For starters, there isn’t a single straight line on the thing. Add in all the flexing and sweating, and you have a pretty difficult platform for innovation. Well, times are changing for wearables. While there is no stock answer, there are some answers in soup stock.

A group of scientists at Stanford University’s Bao Lab have created a whisper thin co-polymer with great conductivity. That’s right, they put two different kinds of insulators together and created a conductor. The only trouble was that the resulting material …read more

Continue reading

Posted in Bao Lab, biowearables, chemistry hacks, soup thickener, space-age polymers, stanford, wearable hacks, Wearables | Leave a comment

LEGO Liquid Handler and Big Biology

A career as a lab biologist can take many forms, but the general public seems to see it as a lone, lab-coated researcher sitting at a bench, setting up a series of in vitro experiments by hand in small tubes or streaking out a little yeast on an agar plate. That’s not inaccurate at all – all of us lab rats have done time with a manual pipettor while trying to keep track of which tube in the ice bucket gets which solution. It’s tedious stuff.

But because biology experiments generally scale well, and because more data often leads to …read more

Continue reading

Posted in automation, chemistry hacks, Hackaday Columns, laboratory, lego, liquid handler, mindstorms, pipette, robots hacks, stem, syringe | Leave a comment