Category Archives: xilinx

Mithro Runs Down Open Source FPGA Toolchains

Tim [Mithro] Ansell has a lot to tell you about the current state of open FPGA tooling: 115 slides in 25 minutes if you’re counting. His SymbiFlow project aims to be the GCC of FPGA toolchains: cross-platform, multi-platform, completely free, and all-encompassing. That means that it’s an umbrella framework for …read more

Continue reading

Posted in artix-7, cons, fpga, iCE40, icestorm, lattice, nextpnr, software hacks, symbiflow, xilinx, yosys | Leave a comment

Who Could Possibly Need An FPGA with 9M Logic Cells and 35B Transistors?

Xilinx recently announced the Virtex UltraScale+ VU19P FPGA. Of course, FPGA companies announce new chips every day. The reason this one caught our attention is the size of it: nearly 9 million logic cells and 35 billion transistors on a chip! If that’s not enough there is also over 2,000 …read more

Continue reading

Posted in Current Events, fpga, Hackaday Columns, intellectual property, rants, xilinx | Leave a comment

Yo Dawg, I Heard You Like FPGAs

When the only tool you have is a hammer, all problems look like nails. And if your goal is to emulate the behavior of an FPGA but your only tools are FPGAs, then your nail-and-hammer issue starts getting a little bit interesting. That’s at least what a group of students …read more

Continue reading

Posted in cornell, emulator, fpga, I/O, programming, research, xilinx | Leave a comment

An FPGA Drives This Antique LCD Screen

If you’re reading this article on a desktop or laptop computer, you’re probably staring at millions of pixels on a TFT LCD display. TFT became a dominant technology due to its picture quality and fast response times, but it’s not the only way to build an LCD. There are cheaper …read more

Continue reading

Posted in cstn, fpga, lcd, xilinx | Leave a comment

FPGA used VHDL for Fractals

Over on GitHub, [ttsiodras] wanted to learn VHDL. So he started with an algorithm to do Mandelbrot sets and moved it to an FPGA. Because of the speed, he was able to accomplish real-time zooming. You can see a video of the results, below.

The FPGA board is a ZestSC1 that has a relatively old Xilinx Spartan 3 chip onboard. Still, it is plenty powerful enough for a task like this.

The project doesn’t directly drive a display. It does the math, stores the results in the board’s onboard RAM and then sends a frame to the PC using the …read more

Continue reading

Posted in fpga, fractal, mandelbrot, vhdl, xilinx, zestsc1 | Leave a comment

Getting Started with Free ARM Cores on Xilinx

We reported earlier about Xilinx offering free-to-use ARM Cortex M1 and M3 cores. [Adam Taylor] posted his experiences getting things working and there’s also a video done by [Geek Til It Hertz] based on the material that you can see in the second video, below.

The post covers using the Arty A35T or Arty S50 FPGA boards (based on Artix FPGAs) and the Xilinx Vivado software. Although Vivado will allow you to do conventional FPGA development, it also can work to compose function blocks to produce CPUs and that’s really what’s going on here.

The final design has an M3 …read more

Continue reading

Posted in arm, arty, cpu, fpga, xilinx | Leave a comment

Signal Generator Uses FPGA

Although there are a few exceptions, FPGAs are predominantly digital devices. However, many FPGA applications process analog data, so you often see an FPGA surrounded by analog and digital converters. This is so common that Opal Kelly — a producer of FPGA tools — launched the SYZYGY open standard for interconnecting devices like that. [Armeen] — a summer intern at Opal Kelly — did a very interesting open source FPGA-based signal generator using a Xilinx FPGA, and a SYZYGY-compliant digital to analog converter.

As you might expect, [Armeen] used a lot of Opal Kelly hardware and software in the project. …read more

Continue reading

Posted in cordic, dds, fpga, opal kelly, signal generator, xilinx | Leave a comment

Another New Old Computer on an FPGA

How would you sell a computer to a potential buyer? Fast? Reliable? Great graphics and sound? In 1956, you might point out that it was somewhat smaller than a desk. After all, in those days what people thought of as computers were giant behemoths. Thanks to modern FPGAs, you can now have a replica of a 1956 computer — the LGP-30 — that is significantly smaller than a desk. The LittleGP-30 is the brainchild of [Jürgen Müller].

The original also weighed about 740 pounds, or a shade under 336 Kg, so the FPGA version wins on mass, as well. The …read more

Continue reading

Posted in LGP-30, retrocomputing, vintage computer, xilinx | Leave a comment